中教数据库 > 信息与控制 > 文章详情

基于CNN和HOG双路特征融合的人脸表情识别

更新时间:2023-05-28

【摘要】为了避免传统表情识别方法中复杂的特征手动提取过程,同时能够提取到更多的表情特征,本文提出一种双路特征融合模型,将卷积神经网络(CNN)和方向梯度直方图(HOG)方法结合起来进行研究.在第一条通道上,对人脸表情图像进行归一化预处理,并使用可训练的卷积核提取隐式特征;在第二条通道上,提取出人脸面部表情的HOG特征,然后输入到卷积神经网络中的全连接层上;最后将融合特征传递至输出层,采用Softmax分类器进行识别并输出结果.本文在FER2013和CK+表情数据库上进行实验,结果验证了方法的有效性.

【关键词】

914 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号