【摘要】为了避免传统表情识别方法中复杂的特征手动提取过程,同时能够提取到更多的表情特征,本文提出一种双路特征融合模型,将卷积神经网络(CNN)和方向梯度直方图(HOG)方法结合起来进行研究.在第一条通道上,对人脸表情图像进行归一化预处理,并使用可训练的卷积核提取隐式特征;在第二条通道上,提取出人脸面部表情的HOG特征,然后输入到卷积神经网络中的全连接层上;最后将融合特征传递至输出层,采用Softmax分类器进行识别并输出结果.本文在FER2013和CK+表情数据库上进行实验,结果验证了方法的有效性.
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中外医疗》 2015-07-06
《现代制造技术与装备》 2015-07-02
《中国果菜》 2015-07-08
《广州大学学报(社会科学版)》 2015-07-01
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点